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The Bell-Evans-Polanyi principle that is valid for a chemical reaction that proceeds along the reaction
coordinate over the transition state is extended to molecular dynamics trajectories that in general do not cross
the dividing surface between the initial and the final local minima at the exact transition state. Our molecular
dynamics Bell-Evans-Polanyi principle states that low energy molecular dynamics trajectories are more likely
to cross into the basin of attraction of a low energy local minimum than high energy trajectories. In the context

of global optimization schemes based on molecular dynamics our molecular dynamics Bell-Evans-Polanyi
principle implies that using trajectories that have an energy that is only somewhat higher than the energy
necessary to overcome the barriers lead fastest to the global minimum of funnellike energy landscapes.
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The Bell-Evans-Polanyi (BEP) principle is a conceptual
tool in chemistry that is introduced in standard textbooks on
physical chemistry [1,2]. It gives a relation between the free
energy AG released in a chemical reaction and the activation
free energy €, for the reaction. It is generally assumed to be
well obeyed for chemically similar reactions. It was qualita-
tively first put forward by Brgnsted [3] who observed that
strongly exothermic reactions have a low activation energy.
A more quantitative relation was then derived by Polanyi et
al. [4,1] who approximated the potential energy surface by
straight lines. This approximation leads to a linear relation
between the activation energy €, and the free energy of the
reaction AG as follows:

Ea:kl+k2AG, (1)

where k; and k,>0 are constants that depend on the slopes
of the lines. A more accurate approach by Marcus [5,2] ap-
proximates the potential energy surface by two parabolas
centered at the two local minima of the energy, which leads
to an additional quadratic term in Eq. (1).

In a chemical reaction, the reaction coordinate connects
the educt A with the product B. In this paper we will study
the BEP principle not for this hypothetical path along the
reaction coordinate but for molecular dynamics (MD) trajec-
tories that cross the dividing hypersurface between the two
basins of attraction of two local minima on the potential
energy surface. The notions of educt and product are re-
placed by the notions of initial and final local minima in this
context. We will show that the BEP principle is also valid in
the context of MD. Since our study requires the calculation
and statistical evaluation of a very large number of local
minima and saddle points, we will initially base our study on
a Lennard-Jones cluster containing 55 atoms [6] for which
stationary points can be calculated rapidly.

We will first investigate how well the traditional BEP
principle is satisfied for these Lennard-Jones clusters. To do
so we have searched for more than 130 000 first order saddle
points G on the potential energy surface connecting ener-
getically low local minima. Subsequently, we have moved
the system by a small amount away from the saddle point
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along the two directions where the curvature is negative, i.e.,
we moved the system in the direction of the eigenvector
associated with the negative eigenvalue of the Hessian ma-
trix and in the negative direction of this eigenvector. These
two points served as the starting points for a local geometry
optimization that led us in the two closest local minima with
energies £ and E”. In this way we have generated a set of
pairs of local minima together with the saddle points that
connect them. Figures 1 and 2 show a scatter plot of AG
=G~ G versus the activation energy €,=G}—G and the red
line in the same figure shows a histogram with averages of
the G;—G7. Each pair of local minima contributed two data
points to these plots since one can surmount the barrier by
going from the minimum A to minimum B as well as by
going from minimum B to minimum A. The scatter plots in
Figs. 1 and 2 show that there is no strict linear correlation
between the barrier height €, and the energy difference AG
between the two minima. For small barrier heights one can
find both high energy and low energy minima behind the
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FIG. 1. (Color online) The relation between the activation en-
ergy G*—G*“ and the reaction energy Gf.’ -G for more than 130 000
saddle points in a Lennard-Jones cluster of 55 atoms. All the ener-
gies plotted here are free energies at 7=0, i.e., just energies. The red
line is the same data but averaged within 25 bins along the x axis.
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FIG. 2. (Color online) Same as Fig. 1,however, at a temperature
(T=30 K), which is below the melting point (50 K) of this weakly
bound system [14]. The entropy contribution was calculated in the
harmonic approximation from the vibrational frequencies [2]. The
figure shows that the free energy has essentially the same behavior
as the energy. The fact that some points are above the diagonal
shows that some shallow minima of the potential energy surface are
not any more minima of the free energy surface. In principle, these
points should be eliminated, but we left them in the figure since
they indicate the size of the entropic corrections.

barrier. However, the BEP principle holds as a negation. If
one goes over high barriers it is extremely unlikely that one
will end up in a low energy minimum. The better correlation
for large activation energies is simply due to the fact that AG
cannot become larger than €,. On the other hand, the red line
in Figs. 1 and 2 shows that there is a good linear relation if
one averages over AG. Good linear Bell-Evans-Polanyi rela-
tions have been found in calculations of dissociative chemi-
sorption of various molecules [7].
Kinetic rate theory gives the rate constant for a reaction as
=S expl- e/ = 2 2 expl (52— B9/ (k)]
h h Q,
(2)

where E, and E are the energies of the initial minimum and
of the saddle point and Q, and Q, are the partition functions
corresponding to the saddle point and the initial minimum,
respectively. Combining this formula with the linear BEP
relationship of Eq. (1) gives a formula where the speed of the
reaction depends only on the energy of the final minimum E?
relative to the initial minimum E¢

=S B exple hy + - VD). (3)
On the macroscopic level a chemical reaction proceeds along
a molecular dynamics trajectory. Its energy is determined by
the temperature 7. The above formula reflects therefore our
MDBERP principle. At low temperature one will rarely find
MD trajectories that cross into high energy local minima E”.
This statement may sound similar to the well known fact that
an ergodic system obeys the Boltzmann distribution and will
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FIG. 3. Entropy vs height of the saddle point (in energy unit, €).
As in Fig. 2 the entropy was calculated in the harmonic
approximation.

therefore be preferentially found in low energy regions. Our
statement is, however, not on thermodynamic equilibrium
distributions but on the dynamics of the system. The deriva-
tion of the above formula [Eq. (3)] has several weak points.
As we have seen before, the BEP principle for the energies
(Fig. 1) holds only on average for similar processes. The rate
equation [Eq. (2)] is itself derived using several approxima-
tions. In particular, it only holds for trajectories which cross
the dividing surface close to the transition state and it is thus
not valid for very high energy MD trajectories. Up to now
we have also neglected the dependence of the partition func-
tion Q, at the saddle point on the temperature. Q, is a mea-
sure of the size of the dividing surface that is accessible at a
certain temperature. The area of this surface increases as the
energy of the MD trajectory relative to the saddle point in-
creases. Hence the crossing area is larger for energetically
lower saddle points and this effect increases thus the prefer-
ence of MD trajectories for crossings into the basins of at-
traction of low energy minima. In addition to this depen-
dence of Q; on the kinetic energy of the MD trajectory, i.e.,
on the temperature, we have also empirically found a depen-
dence of Q, on the height of the saddle point. The positive
curvatures of the potential energy surface near low energy
saddle points is typically larger and so their entropy associ-
ated to Q, becomes smaller (Fig. 3). This decreases the pref-
erence of MD trajectories for crossings into low energy ba-
sins.

Because of all the uncertainties listed above, we will now
present numerical experiments to verify the MDBEP prin-
ciple. In all these experiments the kinetic energy of the MD
trajectories was considerably larger than the minimum en-
ergy required to be able to overcome the transition states.
Figure 4 shows the results of the first numerical experiment.
For a large number of MD trajectories that start with random
directions but fixed kinetic energy E};, from a certain mini-
mum with energy E, we have recorded how many times this
trajectory reaches the basin of attraction of neighboring
minima with energy E;. To check whether the MD trajectory
has crossed into another basin of attraction steepest descent
geometry optimizations were started after every 20 MD
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FIG. 4. The number of visits as a function of E,—E, for a MD
trajectory with a kinetic energy of 4.0€ per atom.

steps. Once the crossing occurred the MD run was stopped.
In Fig. 4 we then plot the number of visits as a function of
E,—FE,. We see that it is orders of magnitude more likely that
the MD trajectory crosses into low energy basins than into
high energy basins. By varying the kinetic energy of the
trajectory we can tune the strength of the preference for low
energy minima. Low energy trajectories have a much stron-
ger preference for low energy minima than high energy tra-
jectories as shown in Fig. 5. We will denote this correlation
as the MDBEP principle: low energy MD trajectories are
more likely to lead into the basin of attraction of a low en-
ergy local minimum than high energy trajectories. The acti-
vation energy of the original BEP principle has thus been
replaced by the energy of the trajectory. As can be seen from
Figs. 1 and 4, both the traditional BEP principle and our
MDBERP principle are only valid in an average sense. As we
will see, this validity in the average sense is sufficient in the
context of global optimization.
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FIG. 5. (Color online) The number of visits as a function of
E,—E, summed over energy bins of length 2 for 4 MD trajectories
with different kinetic energies. The curve for an energy of 4.0€
represents the same data as the scatter plot in Fig. 4.
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FIG. 6. The MDBEP principle for the Lennard-Jones cluster of
55 atoms.

Methods for global geometry optimization are an active
area of research, as can be decided from the large number of
publications in this field. A basic problem in this context is to
construct moves that on the one hand rapidly lead downward
in energy and on the other hand, avoid trapping [12,13,15] in
a local minimum that is not the global minimum. We will
exemplify this issue in the context of the minima hopping
method (MHM) [8,9]. In the MHM the system moves from
one local minimum to another by a combination of MD and
local geometry optimizations. With the MD part one jumps
from one minimum into the basin of attraction of another
minimum. The subsequent local geometry optimization part
brings us then into the local minimum of this basin of attrac-
tion. From the MDBEP principle we expect that low energy
MD trajectories are the most efficient for global optimiza-
tion. Figures 6 and 7 show that there is indeed a very strong
correlation between the energy of the MD trajectory and the
number of minima that are visited before the global mini-
mum is found. The data for Figs. 6-10 were obtained by
performing MHM runs that are stopped once the global mini-
mum is found for different but fixed kinetic energies Ey;,
(i.e., Bi=B,=B;=1 using the notation of Ref. [8]) in a rea-
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FIG. 7. The MDBEP principle for the Lennard-Jones cluster of
38 atoms.
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FIG. 8. The MDBEP principle for the Morse cluster of 38 atoms
with p=6.0.

sonably chosen energy interval. Subsequently, we plot the
values of Ey;, versus the number of local minima that were
visited before the global minimum was found. The potential
energy of the local minimum from which the MD trajectory
starts is set to zero. In this way the kinetic energy is the total
energy of the MD trajectory and by energetic reasons it can-
not cross barriers higher than Ej;, relative to the starting
minimum. Only new and accepted local minima are counted.
In order to achieve better statistics we perform for each fixed
E;i, 100 MHM runs (for Fig. 6 the average is taken over
1000 runs), and we take for the plots the averaged number of
visited local minima. The Lennard-Jones 55 cluster whose
behavior is shown in Fig. 6 is a system for which it is very
easy to find the global minimum since it has a one funnel
structure. Other Lennard-Jones clusters such as the 38 atom
cluster whose behavior is shown in Fig. 7 have two or more
funnels [14]. In this case low kinetic energy MD trajectories
will rapidly lead into a funnel which is not necessarily the
funnel containing the global minimum. Once the system is
trapped in a wrong funnel a sufficiently large kinetic energy
is evidently required to escape from it. Figure 7, however,
shows that also in this case the efficiency of the global opti-
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FIG. 9. The MDBERP principle for the Morse cluster of 38 atoms
with p=10.0.
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FIG. 10. The MDBEP principle for the Lenosky tight-binding
cluster of 20 atoms.

mization is mainly determined by how rapidly the bottom of
a funnel is reached and high energy trajectories are thus less
efficient than low energy trajectories even though they can
more easily escape from any wrong funnel.

Even for one funnel structures there is, of course, a lower
limit to the kinetic energy. Once it is too low no barriers can
any more be overcome and the system gets trapped. One has
thus to reconcile two opposite requirements on the kinetic
energy of the MD trajectories. This is done in a very efficient
way in the minima hopping method. If the system goes down
in one funnel it explores new local minima and the kinetic
energy of the trajectories used to hop from one minimum to
another one is reduced. Once the system gets trapped the
kinetic energy is increased through a feedback mechanism
and the system can escape from any funnel. Minima hopping
keeps a history list of all the minima that were previously
visited and the feedback is activated if old minima are revis-
ited. Since escapes from a funnel seldom occur, one can
achieve in the minima hopping method very low average
energies for the MD trajectories without being trapped.

Figures 8 and 9 present our results for Morse clusters of
38 atoms with p=6.0 and p=10.0. Large values of p lead to
an interaction that varies over shorter length scales. As a
consequence, the potential energy surface becomes more
rugged and has significantly more local minima. As a conse-
quence, considerably more minima are visited before the glo-
bal minimum is found. The global optimization is, however,
also in this case more efficient for low energy trajectories
which implies that the MDBEP principle is well observed for
very rugged potential energy surfaces.

Figure 10 presents our results for the Siy, cluster [10]
within the Lenosky tight-binding scheme [11]. In contrast to
the Lennard-Jones and Morse potentials the silicon tight-
binding scheme has much more complicated interactions that
depend not only on the distance between atoms but also on
the quantities like the bond angles. Tight-binding schemes
are the simplest way to treat solid state systems at a quantum
mechanical level. The Lenosky tight-binding scheme gave
very good agreement with the DFT energies [9] and can be
considered as a reliable approximation to a precise density
functional treatment of silicon clusters. The fact that low
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energy trajectories again lead faster into the global minimum
indicates that the MDBEP principle is also valid for realistic
interactions and, in particular, for quantum mechanical inter-
actions.

The fact that for small values of Ej;, the global minimum
is found after having visited only a small number of local
minima does not imply that the computational time in the
MHM is continuously decreasing with smaller values of Ey;,,.
If E;;, is getting too small the system has to make a huge
number of attempts before succeeding to escape from the
basin of attraction of the current minimum and this will ac-
tually lead to an increase in the computer time (Fig. 11). For
this reason it is also in practice virtually impossible to ex-
plore the behavior of trajectories with lower energy than
those shown in Figs. 6—10. Figure 6 shows, however, that the
minimum of the CPU time is reached when the number of
minima visited becomes small. The BEP principle is thus not
only of conceptual interest but can in practice also help to
save CPU time. In practice, the short computation time can
be obtained by giving the MD trajectories initial velocities
that have large components in the subspace of low curvature
of the Hessian matrix. Due to the fact that low energy saddle
points often lie at the end of low-curvature modes [16—18]
one can in this way even with low energy trajectories very
rapidly escape from the present minimum. A similar gain in
efficiency was found in the context of global optimization
using random moves if those moves were biased in the di-
rection of the low-curvature modes [19]. In summary, we
have shown that the BEP principle can be extended to MD
trajectories with high energies which cross from one basin of
attraction into another one far from the transition state. We
call this extended principle MDBEP principle. It says that
MD trajectories with lower energy are more likely to lead
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FIG. 11. (Color online) The average CPU time (left Y axis)
along with the average number of distinct local minima visited
(right Y axis) before reaching the global minimum for the Lennard-
Jones cluster of 55 atoms are plotted against the Kinetic energy of
the MD trajectory per atom (Ey;,).

into basins of attraction of low energy configurations than
very high energy trajectories. In the context of global opti-
mization this principle can be used to improve the efficiency
of existing MD based methods by tuning the energy of the
MD trajectories.
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